19,319 research outputs found

    Archaeology via underwater robots : mapping and localization within Maltese cistern systems

    Get PDF
    This paper documents the application of several underwater robot mapping and localization techniques used during an archaeological expedition. The goal of this project was to explore and map ancient cisterns located on the islands of Malta and Gozo. The cisterns of interest acted as water storage systems for fortresses, private homes, and churches. They often consisted of several connected chambers, still containing water. A sonar-equipped Remotely Operated Vehicle (ROV) was deployed into these cisterns to obtain both video footage and sonar range measurements. Four different mapping and localization techniques were employed including 1) Sonar image mosaics using stationary sonar scans, and 2) Simultaneous Localization and Mapping (SLAM) while the vehicle was in motion, 3) SLAM using stationary sonar scans, and 4) Localization using previously created maps. Two dimensional maps of 6 different cisterns were successfully constructed. It is estimated that the cisterns were built as far back as 300 B.C.peer-reviewe

    An Integrated Software-based Solution for Modular and Self-independent Networked Robot

    Full text link
    An integrated software-based solution for a modular and self-independent networked robot is introduced. The wirelessly operatable robot has been developed mainly for autonomous monitoring works with full control over web. The integrated software solution covers three components : a) the digital signal processing unit for data retrieval and monitoring system; b) the externally executable codes for control system; and c) the web programming for interfacing the end-users with the robot. It is argued that this integrated software-based approach is crucial to realize a flexible, modular and low development cost mobile monitoring apparatus.Comment: 9 pages, Proceeding of the 10th International Conference on Control, Automation, Robotics and Visio

    Air vehicle simulator: an application for a cable array robot

    Get PDF
    The development of autonomous air vehicles can be an expensive research pursuit. To alleviate some of the financial burden of this process, we have constructed a system consisting of four winches each attached to a central pod (the simulated air vehicle) via cables - a cable-array robot. The system is capable of precisely controlling the three dimensional position of the pod allowing effective testing of sensing and control strategies before experimentation on a free-flying vehicle. In this paper, we present a brief overview of the system and provide a practical control strategy for such a system. ©2005 IEEE

    Managing a Fleet of Autonomous Mobile Robots (AMR) using Cloud Robotics Platform

    Get PDF
    In this paper, we provide details of implementing a system for managing a fleet of autonomous mobile robots (AMR) operating in a factory or a warehouse premise. While the robots are themselves autonomous in its motion and obstacle avoidance capability, the target destination for each robot is provided by a global planner. The global planner and the ground vehicles (robots) constitute a multi agent system (MAS) which communicate with each other over a wireless network. Three different approaches are explored for implementation. The first two approaches make use of the distributed computing based Networked Robotics architecture and communication framework of Robot Operating System (ROS) itself while the third approach uses Rapyuta Cloud Robotics framework for this implementation. The comparative performance of these approaches are analyzed through simulation as well as real world experiment with actual robots. These analyses provide an in-depth understanding of the inner working of the Cloud Robotics Platform in contrast to the usual ROS framework. The insight gained through this exercise will be valuable for students as well as practicing engineers interested in implementing similar systems else where. In the process, we also identify few critical limitations of the current Rapyuta platform and provide suggestions to overcome them.Comment: 14 pages, 15 figures, journal pape

    Robust Environmental Mapping by Mobile Sensor Networks

    Full text link
    Constructing a spatial map of environmental parameters is a crucial step to preventing hazardous chemical leakages, forest fires, or while estimating a spatially distributed physical quantities such as terrain elevation. Although prior methods can do such mapping tasks efficiently via dispatching a group of autonomous agents, they are unable to ensure satisfactory convergence to the underlying ground truth distribution in a decentralized manner when any of the agents fail. Since the types of agents utilized to perform such mapping are typically inexpensive and prone to failure, this results in poor overall mapping performance in real-world applications, which can in certain cases endanger human safety. This paper presents a Bayesian approach for robust spatial mapping of environmental parameters by deploying a group of mobile robots capable of ad-hoc communication equipped with short-range sensors in the presence of hardware failures. Our approach first utilizes a variant of the Voronoi diagram to partition the region to be mapped into disjoint regions that are each associated with at least one robot. These robots are then deployed in a decentralized manner to maximize the likelihood that at least one robot detects every target in their associated region despite a non-zero probability of failure. A suite of simulation results is presented to demonstrate the effectiveness and robustness of the proposed method when compared to existing techniques.Comment: accepted to icra 201
    • …
    corecore